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SUMMARY 

A multiblock algorithm for general 2D and 3D turbulent flows is introduced and applied to three cases: a 
compressor cascade passage, a two-element high-lift aerofoil and a round-to-square transition duct. The method 
is a generalization of a single-block scheme which is based on a non-orthogonal, fully collocated finite volume 
framework, applicable to incompressible and compressible flows and incorporating a range of turbulence 
transport models, including second-moment closure. The multiblock implementation is essentially block- 
unstructured, each block having its own local co-ordinate system unrelated to those of its neighbours. Any one 
block may interface with more than one neighbour along any one block face. Interblock communication is 
handled by connectivity matrices and effected via a two-cell overlap region along block boundaries in which halo 
data reside. The algorithm and the associated data communication are explained in detail, and its effectiveness is 
verified, with particular reference to improved numerical resolution and parallel computing. 
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1. INTRODUCTION 

Geometric flexibility is one of the key ingredients in the mix of capabilities allowing computational 
fluid dynamics (CFD) to be used as a practical aid to engineering design. It is also of increasing 
importance in the context of validation efforts focusing on geometrically and physically complex 
turbulent flows, especially in high-lift aerodynamics and highly loaded turbomachine blades in which 
turbulence transport contributes significantly to the primary operational characteristics. 

Although a considerable level of flexibility can be attained with single-block structured grids 
(provided non-orthogonality is admitted), there are many applications, notably such involving 
multiply connected domains, which cannot be meshed with a single structured grid. Alternative 
routes to increasing geometric flexibility are based on unstructured and block-structured grids. Both 
have strengths and weaknesses. With the latter option, local flow-driven adaptation is difficult. 
However, this option is well-disposed towards an accurate near-wall resolution, allows the use of 
well-established structured-grid solvers (e,g. ADI, ICCG, SIP, multigrid), is well-suited to parallel 
computing based on domain-decomposition methods, and permits the use of a simple index 
connectivity which enhances transparency and eases programming. Adaptation can be implemented 
by use of local mesh refinement and embedding strategies (e.g. References 1-3), although this 
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usually necessitates the introduction of ‘hanging nodes’ and the application of elaborate interpolation 
practices which ensure satisfaction of the conservation principle across mesh-interface planes. 

The objective of this paper is to describe in detail a multiblock implementation of a general non- 
orthogonal finite volume algorithm for 2D and 3D turbulent flows (STREAM4). The block topology 
is essentially unstructured, with a block-connectivity matrix generated to allow efficient interblock 
communication. Within each block, the grid is fully structured, however. One notable feature of the 
method is that the co-ordinate systems, governing equations and physical models need not be (indeed, 
are not) identical across the entire block family, a characteristic which is particularly beneficial in 
external aerodynamics applications in which large, nearly inviscid regions coexist with thin boundary 
layers and complex separated zones. 

The remainder of the paper is divided into two principal sections. First, the numerical details of 
extending a single-block algorithm to a multiblock strategy are addressed. This includes the 
construction of the connectivity matrix, the exchange of ‘halo data’ and the design of the data 
structure. This is followed by several verification and validation tests for 2D as well as 3D cases, 
wherein multiblock solutions are contrasted with experimental data and, where appropriate, with 
single-block ones to demonstrate the validity of the multiblock implementation. 

2. DESCRIPTION OF A MULTIBLOCK ALGORITHM 

2.1. Basic numerical framework 

The multiblock strategy takes as its starting point a single-block scheme which solves the 
Reynolds-averaged NavierStokes equations, the mass conservation law and the appropriate 
turbulence-model equations. The finite volume discretization procedure and the implementation of 
turbulence models up to full second-moment closure, within the single-block algorithm, for both 
incompressible and compressible (transonic) flows, have been presented in detail by Lien and 
Le~chziner.~ Here, only those facets are summarized that impinge on the multiblock extension to 
follow in Section 2.2. To simplify the statement without, however, introducing a significant loss of 
generality, attention is focused on two-dimensional steady flow. The extension to a three-dimensional 
framework is fairly straightforward. 

Integration of any transport equation governing a flow property 4 over the volume shown in Figure 
1 and application of the Gauss divergence theorem result in a balance of convective and diffusive cell 

&S 

Figure 1 .  Non-orthogonal 2D finite volume with collocated storage arrangement 
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face fluxes and volume-integrated net source. The introduction of approximations which link the 
convective and diffisive fluxes to nodal values leads to a weighted-average formula of the form 

where 4 stands either for momentum components or for any intensive scalar property, including 
transported turbulence quantities, and S,  represents the source/sink term. In the present 
implementation, either the QUICK scheme of Leonard' or the UMIST-TVD scheme of Lien and 
Leschziner6 has been used for convection, while the diffusive fluxes have been approximated by 
central differences. Whatever approximations are adopted for transport, equation (1) applies, 
provided that the source term is made to accommodate all links to nodes lying beyond the compact 
five-point stencil P, E, W, N, S. In the present scheme, any higher-order convection scheme is 
implemented as a first-order upwind approximation augmented by deferred corrections which are 
lumped in the source term S+. The coefficients Am thus become 

AE = [ r , J ( t x 5 x  + 5y5y)le + W ( - P U ,  Ole, 

Aw = r,J(txCx + tyty)Iw + W ( P U ,  ()Iw7 
AN = [ ~ , J ( v X V X  + ~ y ~ y l l n  + W(-P~,  O)n, 

As = [ ~ $ J ( ? , r l x  + ?y?y)ls + W @ V ,  O),,  
A p  =A,  +A, +AN +As - S p ,  

where the contravariant velocities are given by 

U = J ( U 5 ,  + "5,), v = J W X  + "VY) (3) 

and SpcPp combines all negative fragments of S,. The component relationship between the natural and 
dual base vectors is 

5, =Y,lJt g y = -  X q I J t  ?x = -YgIJ, ?y = X t I J ,  (4) 

with J = xtyy - xvyr. With the UMIST-TVD scheme used for convection, the deferred corrector 
'source' SF in (1) is 

in which q(r) is defined as 

p(r) = max[0, min(2r, 0.25 + 0.79,  p.75 0.251;,2)], 
QUICK 

and r&,,, are (see Figure 2) 
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To impose mass conservation in both incompressible and compressible conditions, the SIMPLE 
pressure-correction algorithm of Patankar7 is adopted. Checkerboard oscillations arising from the 
collocated storage arrangement can be avoided by use of Rhie and Chow’s interpolation.’ Although 
this scheme is well-known, its principal elements need to be highlighted here, at least in simple terms, 
to aid understanding of a particular facet of the multiblock extension to follow. The essential 
arguments may be conveyed by reference to a simple one-dimensional form of the discretized 
equation pertaining to the cell in Figure 3. The key point is that the face velocity u, is evaluated by 
linear interpolation of the momentum equations governing the nodal velocities up and uE from which 
then the pressure-gradient terms are subtracted and to which a compensating pressure-gradient 
fragment is finally added, the last formed only with the two nodal pressures straddling the face 
velocity u,. The result is then 

1 
2 (UP + ME) - 

linear interpolation 

ue = 

(9) + 4 “U/AP)P + (DU/AP),l(PP - PE) - [(DU/AP)(P, - PeIlP - [(DU/A,)(P, - Pe)lEJ9 
pressure smoothing 

where DU, is the u-directed cross-sectional area at location m (m =P, E). An important point to 
underline in relation to (9) is that the face velocity u, depends upon pressure values at four nodes, two 
on either side of the face. This has implications as regards interblock connectivity and data transfer. 
As an aside, it is instructive to note that with the assumption DUp=DUE and (Ap)p=(Ap)E and a 
linear interpolation of pe and pw, the ‘pressure-smoothing’ term in (9) turns out to be 

which is, in essence, a third-order artificial dissipation term. Since the face velocity u, enters the 
convective flux u,(pu)Ay of the u-momentum equation, interpolation of (9) introduces a fourth-order 
smoothing term into the momentum equation, even if ap/ax is approximated by central differencing. 
The pressure-correction equation arises upon decomposing the correct face velocity u, into an 
estimated value, obtained with an approximate pressure field, and a corrective perturbation: 

where the superscript * denotes the approximate value and ui - (DU/AP),(pp -p;), with the 
subscript ‘e’ in the RHS multiplier denoting a centred average of the values at the two neighbouring 
nodes on either side of the face. Substitution of (1 1) and analogous expressions for other face- 
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Figure 2. Nine-point stencil for QUICK and UMIST-TVD schemes 
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Figure 3. Finite volume cell in one-dzmensional mesh 

velocity components into the continuity equation for the cell in Figure 1, yields the pressure- 
correction equation 

where 

with the mass imbalance Rm defined by 

2.2. Multiblock implementation 

The multiblock algorithm is based essentially on a subdivision of the solution domain into an 
arbitrary number of contiguous, non-overlapping blocks, each having its own grid and associated 
local co-ordinate system. Each grid is first generated separately by use of any suitable grid-generation 
procedure, the only constraint being continuity in grid-line positions across the block boundaries. 
Each block, looked at in isolation, is then surrounded by an ‘auxiliary’ layer of two cells originating 
from neighbouring blocks. In effect, the block is made to penetrate into its neighbours to the extent of 
two cell intervals in order to accommodate ‘halo data’ which are needed for the solution within the 
block in question. The choice of a two-cell penetration is linked to the nature of the higher-order 
convection scheme and the Rhie and Chow interpolation practice (equations (5x8) and (9)). 
Although the co-ordinate systems of neighbouring blocks can be quite different in orientation, as is 
exemplified in Figure 4 by blocks 2 and 3, all geometric data pertaining to the auxiliary layer attached 
to the parent block, including the metric tensors and the Jacobian, are treated in terms of the co- 

Figure 4. Multiblock arrangement with different local co-ordinate systems 
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ordinate system of the parent block and stored as if the layer were part of the block. This arrangement 
obviates, with one exception noted below, the need for any one block to directly access the ‘foreign’ 
geometric information and mass fluxes residing in neighbouring blocks during the solution process 
within the block. 

Interblock connectivity is handled by a connectivity matrix in the form of the 2D array 
MATRIX(BLOCK, FACE), where BLOCK is the block number being considered, FACE identifies 
the block face (ranging from 1 to 4, with 1 denoting the eastern face, 2 the western face, etc.) and 
MATRIX identifies the block sharing FACE with BLOCK. The co-ordinate system relating to any 
one block is stored in the form of COORD(BLOCK, FACE), representing all possible co-ordinate 
permutations in the neighbouring block sharing the face ‘FACE’. A typical example for COORD is 
given in Figure 5 .  The neighbouring right-hand side block can have any one of eight combinations of 
coordinates, and this is signified by the integers 1 4 .  Another more general example illustrating the 
use of both MATRIX and COORD is given below by reference to Figure 4, where 

MATRIX(3,l) = 2, 
MATRIX(3,3) = 0, 

MATRIX(3,2) = 0, 
MATRIX(3,4) = 1 

and 

COORD(3,l) = 8, COORD(3,2) = 0, 
COORD(3,3) = 0, COORD(3,4)=1. 

In the above, the value ‘0’ signifies that the neighbouring block is a physical (real) boundary of the 
solution domain. 

Reference to (9), (12) and (13) shows that the coefficients in the pressure-correction equation 
depend on the Ap-value associated with the momentum equations applied to the cell over which mass 
conservation is to be satisfied as well as to neighbouring cells on either side in any co-ordinate 
direction. It is crucial, therefore, to transmit this quantity from the neighbouring blocks into the 
auxiliary two-cell layer when solving the momentum equations in the parent block. This transfer is 
greatly assisted by the fact that AP is co-ordinate-invariant, i.e. independent of the block-local co- 
ordinate system. To demonstrate this, attention is focused on the cell shown in Figure 6 ,  associated 
with two different local co-ordinate systems. The mass fluxes on the eastern and northern faces may 
be evaluated by combining (3) and (4), in conjunction with the assumption that A{ = Aq = 1, as 
follows: for co-ordinate system (a), 

I 5  6 7 8 

Figure 5.  All possible permutations of local co-ordinate systems in blocks adjacent to any reference block 
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for co-ordinate system (b), 

(16) 
ue = -u23AY23 -k v23h23 * 

Vn = - ~ 3 4 A ~ 3 4  + ~ 3 4 h 3 4 9  

u w  = U4lAY41 - v 4 1 h 4 1 9  

vs = U12AY12 - V 1 2 b 2 -  

Here, Ax,,, = x, - x, and Ay,,,, = y, - y, (1  < m, n < 4). The difhsion coefficients, on the other 
hand, can be written as: 

for co-ordinate system (a), 

for co-ordinate system (b), 

Here, A;,, = A&, + A&,. Since (Je, J,, J,, J,) in co-ordinate system (a) are the same as (J,, Jn, J,, 

Jw) in co-ordinate system (b) and S, = 0 in the momentum equations, the end results for A p  obtained 
by substituting either (15) and (17) or (16) and (18) into (2) are identical. 

Once the coefficients for the transport and pressure-correction equations have been assembled for 
each block, the resulting systems of equations are solved in a segregated manner in the following 
sequence: 

Each set of equations pertaining to any one block is solved within an ‘inner iteration’ by Stone’s SIP 
or the AD1 method concurrently with the temporarily ‘frozen’ block-boundary conditions in the 
‘halo’ region. Then, an update of boundary conditions is effected, via the connectivity matrix and the 
identifiers of the co-ordinate systems in neighbouring blocks, in order to establish the interblock 
coupling. An ‘outer iteration’ consists of the solution of any one set of equations over all blocks and 
associated exchange of data across block boundaries. This sweep is arranged as a block-Jacobi 
method. This sequence is then repeated for all flow properties and may be expressed by the following 
FORTRAN code fragment: 

DO NS = 1 ,NO-of-SWEEPSe=outer iteration 

CALL MATRIX-SOLVER(NB, 4 ) e i n n e r  iteration 
END DO 

DO NB = 1 ,NO-Of-BLOCKS 

DO NB = 1 ,NO-Of-BLOCKS 
CALL MESSAGE-PASS(NB, 4) 
END DO 
END DO 
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Figure 6. Identical finite volumes but with different local co-ordinate systems 

One advantage of using the above structure when running the algorithm on a (virtual) shared-memory 
computer, such as the multiprocessor Cray YMP, is that DO-loop NB can be parallelized, e.g. by 
inserting a CFPP$ CNCALL compiler directive above this loop. The inner loop contained in the 
matrix solver, such as a tridiagonal matrix algorithm combined with a ‘red and black’ colouring 
technique, can easily be vectorized. Since the ‘halo data’ are exchanged via the connectivity matrix, it 
is advantageous to insert a CFPP$ NODEPCHK compiler directive which enforces vectorization in 
the MESSAGE-PASS subroutine. To demonstrate the significance of the above step, the solution of a 
Laplace equation is considered. The computational domain, containing 32 x 32 x 32 grid lines, is 
decomposed into 4 x 4 x 4 ( = 64) blocks. The program is compiled with an option which activates 
the ‘autotasking’ mode of the Cray YMP (see Cray Manual SG-3074 5.0 for details). The speed-up 
values attained on eight processors, with and without inserting the parallelizing and vectorizing 
compiler directives, are shown in Figure 7, and the compilation listing associated with the former is 

Speed-up 
8 7  

7- 

6-  

5 -  

4- 

3- 

2- 

1 -  -0 

0 
0 1 2 3 4 5 6 7 8  

CPUS 

Figure 7. Speed-up characteristics with multitasking on Cray YMP’ (a) without and (b) with parallel compiler directives 
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NI,XNJ, NI,XNJ, NI,XNJ, - 
B, 0, 0 3  

(a) (b) 

Figure 8. Two options for block data storage in memory 

given in the Appendix. As can be seen, use of the directives results in a dramatic increase in speed-up 
from 1.13/8 to 7.54/8. 

Two kinds of data structure for storing the variables have been studied, and both are shown 
schematically in Figure 8. The first one, represented by Figure 8(a), has been adopted by Lien and 
Leschziner' in their implementation of a multigrid method. The advantage of this data structure is 
that the I-J index structure can be retained, which considerably reduces the effort in programming the 
discretized equations. However, a major drawback is that the memory portions to be allocated to 
associated blocks need to be prearranged manually in order to maximize the utilization of memory 
space-an approach which can be very laborious when the number of blocks is large or the size of the 
blocks varies greatly across the solution domain. The alternative arrangement in which data in blocks 
are stored contiguously in a one-dimensional array, as illustrated in Figure 8(b), avoids the above 
drawback. In the present study, both methods were investigated. For the case of the NLR 7301 multi- 
element aerofoil to be considered in Section 3.3, the saving of memory allocation achieved by use of 
the data structure in Figure 8(b) relative to that in Figure 8(a) is 17 per cent. 

3. APPLICATION 

3.1. Introductory remarks 

This section is concerned with the validation of the multiblock scheme and its application, in 
conjunction with advanced turbulence models, to two- and three-dimensional flows of industrial 
relevance. The first example is a highly loaded 2D 'controlled diffusion' (CD) compressor-cascade 
blade operating at a Reynolds number of 7 x lo5, based on the inflow velocity and chord length. 
Global as well as local experimental data have been obtained for this case by Elazar and Shreeve." 
This case is used first to validate the correctness of the data-exchange algorithm by use of the 'halo' 
region in the context of a domain-decomposition implementation. Then, results obtained with a 
single-block and a multiblock H-grid as well as a hybrid H/O-multiblock grid, the latter featuring a 
change in co-ordinate orientation across block boundaries, are compared with each other. Finally, the 
multiblock strategy is used to investigate the performance of turbulence closures, including a non- 
linear eddy-viscosity model, by reference to experimental data. 

The second two-dimensional case investigated is the NLR 7301 two-element aerofoil for which 
measurements have been performed by van den Berg" and Gooden and van Lent.'* The distinctive 
feature of this case, as far as block-connectivity is concerned, is that one block can interface with 
more than two others along any one block face, requiring the modification of the MATRIX and 
COORD arrays mentioned in Section 2. The flap deflection angle dF is 20°, and the Reynolds number, 
based on the freestream velocity and the chord of the wing, is 2.5 x lo6. The particular condition 
chosen for the present calculation is one in which the minimum distance between the wing trailing 
edge and the flap upper sur facHhe 'gap'--equals to 2.6 per cent of the chord at the main aerofoil 
incidence u= 13.1". 
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The last case examines an extension of the above multiblock scheme to three-dimensional 
conditions. The geometry considered is a circular-to-rectangular (CR) transition duct, examined 
experimentally by Davis and Ge~sner. '~ The Reynolds number, based on the inlet bulk velocity and 
inlet diameter, is 3-9 x lo5. The computational domain extends from 1D upstream of the transition 
entry to 3 . 5 0  downstream of its exit. At the inlet, velocity and turbulence-energy profiles were 
prescribed on the basis of experimental data. The dissipation rate has been extracted from the mixing 
length argument. At the exit, a fully developed flow condition is assumed. 

3.2. CD compressor cascade 

To verify that interblock communication operates correctly, this flow has been computed with the 
H-type mesh shown in Figure 9, treated in one computation as a single block and in the other as a 
multiblock arrangement. For correctness of implementation to be verified, both solutions must be 
shown to be identical. Thus, Figure 10 compares pressure contours and demonstrates that both 
meshes result in the same solution. 

Computational solutions are generally claimed to be free from numerical error if they are 
insensitive to grid density and disposition. This condition is often extremely difficult to achieve with 
a single mesh, even in relatively simple two-dimensional geometries, usually because the grid cannot 
be effectively adapted to geometric features having high curvature. This is especially dis- 
advantageous in turbomachine application where it is essential to resolve accurately the viscous and 
turbulent flow around the leading and trailing edges. The advantage derived in this environment from 
the multiblock strategy, in which the H/O-grid in Figure 11 is adopted, is indicated in Figure 12 by a 
comparison of pressure contours close to the leading edge. As can be seen, the 'kink' in the pressure 
contours returned by the H-type grid (Figure 12(a)) is not present in the solution obtained with the 
H/O-mesh (Figure 12(b)). Computational results have been obtained with Launder and Sharma's 
low-Re k+ modelI4 for an inlet flow angle of 46", representing extreme off-design conditions in 
which the blade is highly loaded and for which losses are high. Solutions for the profiles of 
streamwise velocity at three locations on the blade suction side are shown in Figure 13. It is noted 
that there is close agreement between the results returned by the two grids, although the H/O-grid 
resolves considerably better the flow structure close to the leading and trailing edges, the former 
having been demonstrated in Figure 12. 

With the validity of the multiblock scheme established, the predictive performance of three 
turbulence closures are examined next. The models are the linear eddy-viscosity variants of Launder 
and Sharmak4 and Lien and Le~chziner'~ and the non-linear variant of Craft et a1.16 The designation 
'non-linear' signifies that the Reynolds stresses are related to higher-order expansions of strain and 
vorticity tensors, with the eddy viscosity being a coefficient of proportionality in each and every 

Figure 9. H-grid (either single-block or multiblock) in CD compressor-cascade passage 
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Figure 10. Pressure contours in compressor-cascade passage, (a) with single-block solution and (b) with multiblock solution 

additive term of the expansion. This approach aims to return, at least in some measure, the anisotropy 
of turbulence and its interaction with curvature and normal straining. Calculations have been 
performed for various incidence angles ranging from 25" to 46".17 Here, only the 46" case is 
presented, in whxh the suction-side flow is close to the 'stall' condition. 

Variations of the boundary-layer, displacement and momentum thicknesses on both pressure and 
suction sides are given in Figure 14. A key process to resolve is the response of the turbulence model 
during the initial development phase of the boundary layer over the suction side. Evidently, there 
exists a laminar separation bubble close to the leading edge, with the flow being transitional and 
becoming turbulent in the vicinity of the reattachment point. The linear model fails entirely to resolve 
this feature, while the non-linear model responds much more sensitively, predicting a much more 
rapid thickening of the boundary layer at the leading edge and hence higher losses in the fully 
turbulent region. 
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Figure 1 1 .  H/O-multiblock arrangement around compressor-cascade blade, with zoom on leading edge and associated local 
co-ordinate systems 

Consistent with the above is the behaviour of the pressure distribution along the suction side, 
shown in Figure 15. The tendency towards separation at the leading edge, resolved by the non-linear 
model, is accompanied by a more gentle increase in pressure in this region. Moreover, the pressure 
plateau on the suction-side base is captured, suggesting a tendency towards stall as the trailing edge is 
approached. 

3.3. NLR 7301 multielement aerofoil 

This second application example is a two-element aerofoil, designed on the basis of an early 
supercritical section having the same designation. The main feature of this configuration is that it 
provides very high lift at high incidence without flow separation being provoked along the suction 
sides, apart from a small laminar separation bubble on the leading edge. Because the near-surface 
flow is in the form of an attached boundary layer, albeit thick and decelerating, the interaction 
between turbulence and curvature has less impact on the mean-flow features than it did in the 
previous case, and calculations have therefore only been performed with the linear eddy-viscosity 
model. The operational conditions are detailed in Section 3.1, and these have been chosen because the 
associated flow is close to the state of maximum lift and for the availability of especially detailed 
measurements. 

No-slip and impermeability conditions were prescribed at the aerofoil surface. At the far-field 
boundary, 10 chords away fiom the centre of the aerofoil, the freestream velocity was specified. The 
transition on the suction and pressure sides of the main wing was induced artificially at x/c = 0.03 
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(a) (b) 

Figure 12. Pressure contours around leading edge of compressor-cascade blade, (a) with single-block H-grid and (b) with 
multiblock H/O-grid 

and 0.7, respectively, in accord with the measurements. On the flap, transition was induced at 
x/c = 1.08 on the suction side, while the flow on the pressure side was assumed laminar. 

The computational grid and the block topology, supplied by Saab, are shown in Figure 16. The 
flow domain is subdivided into nine blocks, containing 36,208 cells. Particular attention is drawn to 
block 1 which abbuts blocks 7 and 8 at the eastern face, a condition requiring the introduction of 
special steps in the connectivity matrices MATRIX and COORD described in Section 2. The 
modified forms are as follows: 

MATRIX(BLOCK, FACE, N-Of-NEIGHBOURS) 
COORD(BLOCK, FACE, N-of-NEIGHBOURS) 

and N-of-NEIGHBOURS denotes the maximum number of neighbours in relation to each face. In the 
case of BLOCK = 1 where N-of-NEIGHBOURS = 2, 

MATRIX( l , l ,  1) = 7, MATRIX(1,1,2)= 8, 
MATRIX( 1,2,1) = 9, 
MATRIX(1,3,1) = 0, 
MATRIX(1,4,1) =0, 

MATRIX(1,2,2) = - 1, 
MATRIX(1,3,2)= - 1, 
MATRIX(1,4,2) = - 1, 
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0.0 0.5 1 .o 0.0 0.5 I .o 

UlUe UlUe 
Figure 13. Velocity profiles in boundary layer on suction side of compressor-cascade blade, predicted with H- and H/O-grid 

and 

COORD(l,l,l)= 1, 
COORD(1,2,1) = 5, 

COORD( 1,1,2) = 5, 
COORD(1,2,2)= - 1, 

COORD(1,3,1) = 0, 
COORD( 1,4,1) = 0, 

COORD(1,3,2) = - 1, 
COORD(1,4,2)= - 1. 

The value ‘ - 1’ above signifies that the associated element in the MATRIX or COORD array is 
redundant owing to the fact that the number of neighbours along that face is less than N-of- 
NEIGHBOURS. An alternative approach to adopting the block topology shown in Figure 16 involves 
a further subdivision so as to ensure that each block face interfaces only one neighbour, allowing the 
original connectivity practices to be retained. 

Computational results for wall pressure and skin friction are compared with experimental &ta in 
Figures 17 and 18 respectively. As can be seen, there is close agreement in respect of pressure 
distributions around both the main aerofoil and the flap, confirming the view that in attached flow 

- Launder-Sharma model 
Lien-Leschzincr d l  

- - -  hft-laundn-Suga model 
_ - _  

B.L.T. (inch) 

-10 4 5  0 0  0 5  10 

X/C 

D.T. (inch) 
00 021 

-1.0 -0.5 0.0 0.5 1.0 

XfC 

M.T. (inch) 0 

0.1, 0 

.1.0 -0.5 0.0 0.5 1.0 

X/C 

@) (C) 
(a) 

Figure 14. Boundary-layer parameters associated with different turbulence models around compressor-cascade blade: 
(a) boundary-layer thickness; @) displacement thickness; (c) momentum thickness 
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Figure 15. Surface pressure predicted with different turbulence models around compressor-cascade blade 
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Figure 16. Multiblock arrangement and mesh used for NLR two-element high-lift aerofoil 
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Figure 17. Surface-pressure distributions (a) around NLR two-element configuration and (b) around flap 
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Figure 18. Skin friction around NLR two-element configuration 

conditions the principal operational parameters--the lift and pressure drag--are rather insensitive to 
turbulence modelling. Comparisons with the rather limited skin-friction data in Figure 18 are not very 
informative, but seem to suggest that skin friction is overestimated at large incidence when the 
adverse pressure gradient is high. This is in accord with the general view that the linear eddy- 
viscosity k-+ model generates excessive levels of turbulence energy as well as turbulent length-scale 
values in curved boundary layers subjected to adverse pressure gradient, owing to a combination of 
insufficient sensitivity to convex curvature and defects in the €-equation. Detailed comparisons with 
experiments for boundary-layer profiles and Reynolds stresses can be found in Reference 18. 

3.4. Circular-to-rectangular transition duct 

A perspective 3D view of the CR duct and plots of two cross-sectional grids at the duct-exit plane, 
associated with different block topologies, are given in Figure 19. The total numbers of grid nodes in 
the block arrangements of Figure 19(a) and 19(b) are 180,000 and 163,300 respectively. The 
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- Station 6 

Figure 19. Mesh and multiblock arrangement for 3D transition duct 

operation of the multiblock scheme is here demonstrated by way of a computation with the low-Re 
k r  model of Lien and Leschziner.” A companion study of the same configuration by Lien and 
Leschziner” presents computations with several turbulence models, including second-moment 
closure. 

Circumferential distributions of the wall-pressure coefficient C,, computed at four different axial 
stations, are compared with experimental data in Figure 20. It is instructive to consider these 
distributions in conjunction with the secondary-velocity fields given in Figure 21, since there is a 
direct causal relationship between transverse motion and pressure gradient. As can be seen, the 
level of C, increases up to station 3, implying deceleration, and decreases towards station 5, 
signifying acceleration. Thereafter the flow tends to recover towards an established constant-area 
duct flow, and the pressure tends to become uniform at station 6. Owing to vertical constriction and 
horizontal elongation in the cross-sectional shape, the pressure at S/S,,, = 0 (centre of the upper 
wall) develops a maximum, while the pressure at S/Sm, = 1 (centre of the side wall) reaches a 
minimum. This induces a sideways motion along the upper wall towards the side walls, which is 
the fist stage leading to the formation of the transverse vortices. Beyond station 3 the curvature on 
both upper and side walls reverses its sign and this counteracts (but does not reverse) the above 
process. 

Finally, circumferential skin-friction distributions are shown in Figure 22. Two prominent features 
are the depression in Cf at about S/S,, = 0-75 and the decline in Cf as the centre of the side wall, 
S/S,, = 1, is approached. The former is due to the suppression of momentum in the boundary layer 
arising from the combined influence of the upper and side walls at the (rounded) comer of the 
rectangular duct. The latter reflects the transport of low-momentum fluid towards the side wall by the 
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Figure 20. Circumferential wall-pressure variations at different axial locations of transition duct, predicted with two grids of 
Figure 19 
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Figure 21. Transverse motion in sections 5(a) and 6(b) of transition duct, predicted with two grids of Figure 19, compared with 
experimental data 
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Figure 22. Streamwise skin-friction coefficient at stations 5 and 6 of transition duct, predicted with two grids of Figure 19 

transverse circulation. Overall, the predictions agree fairly well with the experiment, with virtually no 
dependence on the grid topology being observed. 

4. CONCLUSIONS 

The formulation and implementation of a general multiblock algorithm for complex turbulent flows 
have been addressed in detail. The algorithm couples, in an unstructured manner, finite volume 
blocks in which the grid is structured but non-orthogonal and in which the equations are solved on a 
fully collocated grid by a pressure-correction algorithm. 

The main impetus for the extension is the need to secure geometric flexibility in flows in which 
turbulence transport is of crucial importance and in which numerical accuracy is essential, especially 
close to surface features of high curvature. 

Since the present algorithm allows the computational domain to be decomposed into arbitrary sets 
of blocks, with block-topology information stored in dedicated connectivity matrices, the execution 
on parallel computers is a natural and straightfornard option. 

Although grid generation within a block-structured approach, especially for very complex 3D 
geometry, can be tedious and time-consuming, the retention of a structured topology offers 
undisputed advantages when complex turbulence models are used to resolve near-wall processes. 
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Moreover, the retention of a simple local indexing system eases vectorization. However, because of 
the adoption of a ‘block Jacobi’, method, in conjunction with a segregated solution sequence, the 
convergence rate tends to deteriorate as the number of blocks increases. The level and rate of 
deterioration depend on numerous factors, however, among them the range of nodes-to-block ratio, 
the detailed block topology across the solution domain, the linear solver used within blocks and the 
complexity of the flow physics and turbulence model. A test in which the number of blocks used for 
the case of the CD compressor cascade, considered in Section 3.2, was increased from four to eight 
yielded an increase in CPU time of only 2 per cent. However, this figure is likely to rise non-linearly 
as the number of blocks increases. This deficiency can be addressed by using geometric or algebraic 
multignd methodean  issue to be considered in a future paper. 
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APPENDIX: FORTRAN code fragment showing the use of Cray YMP parallel compiler directives in 
the solution of a Laplace equation 

SUBROUTINE LAPLACE 

COMMON BLOCKS 

p- - - - - - 
P 
p N- - - - -  
P N N-- -  
P N N V -  
P N N V  
P N N V  
P N N V  
P N N V  
P N N V  
P N N V  
P N N V  
P N N V  
P N N V  
P N-N-V- 
P 

C 
NSWPU = 4 

C 
CFPP$ SELECT CONCUR 

C 
DO 1000 NB = 1, NO-of- BLOCKS 

DO 10 K = NKBEGVB) + 2, NKENDVB) - 2 
DO 10 J=NJBEG(NB)+ 2, NJEND(NB) - 2 
DO 10 I = NIBEG(NB) + 2, NIEND(NB) - 2 
AP(I,J,K) = 6. 
AE(I,J,K) = 1. 
AW(I,J,K) = 1. 
AN(I,J,K) = 1. 
AS(I,J,K) = 1. 
AT(I,J,K) = 1. 
AB(I,J,K) = 1. 
SP(I,J,K) = 0. 
SU(I,J,K) = 0. 
10CONTINiJE 

C 
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1 OOOCONTNJE 
C 

CFPP$ CNCALL 
DO NS = 1, NO-of-SWEEPS 

DO NB = 1, NO-of-BLOCKS 
CALL MATRIX-SOLVER(NB,PHI) 
END DO 

CFPP$ CNCALL 
DO NB = 1, NO-of-BLOCKS 
CALL MESS AGE-PAS S(NB ,PHI) 
END DO 

END DO 
RETURN 
END 

C 

N: Loop not optimized or not selected. 
V: Vector construct; FPP vectorizes. 
P: Parallel construct; FPP autotasks. 
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